
The Twins Paradox

The set-up minus the paradox: You have a set of twins (earth-bound Billy-Joe 
and space-ship Billy-Bob), both 21 years old.  Space-ship Bob gets into a space 
ship and goes speeding off with velocity v=(24/25)c . . . (this is a relative 
velocity of                                   ).  He travels for 7 years, as measured by the 
clock in his ship, then turns around and spends another 7 years coming home.  
When he arrives back at earth, how old is space-ship Bob and how old is earth-
bound Joe?

To begin with, you have to decide from which frame of reference you will 
make your measurements.  At this point, we know what is happening from 
the perspective of space-ship Bob’s frame of reference, (we are told that 
his clock measures 7 years out and 7 years back, so he must be 21 + 7 +7 = 
35 years old upon return), so that’s the frame we will start with.  Looking 
at earth-bound Joe from this frame, this is a standard time dilation problem.  

β = vc =
.96c

c = .96
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Earth-bound Joe has his own set of clocks and meters sticks. He “watches” 
space-ship Bob (i.e., he measures Bob’s progression using his own set of meter 
sticks and synchronized clocks), and he registers time dilation occurring in the 
space ship.  That is, he measures time slowing down in the space ship.  

The amount of slow down is governed by the relationship

where        is the elapsed time as measured by the 
ships clocks (14 years in this case),        is the 
elapsed time as measured by the earth’s clocks 
(this will be related to the age of the twin who 
stayed behind), and     is the relativistic factor and 
is equal to the relationship shown to the right:

tearth = γ  tship ,

γ = 1

1− v
c( )2

  = 1
1−β2
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For this case, the relativistic factor is;

tearth = γ  tship

   ⇒    tearth = 14 years( )(3.67)
   ⇒    tearth = 51.4 years

γ = 1

1− v2

c2( )1/2

  = 1

1− .96c( )2

c2
⎛
⎝⎜

⎞
⎠⎟

1/2

  = 3.67

That means the elapsed time on earth is:
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In summary, s-s Bob was 21 years when he started the journey.  He aged 14 years as 
measured by his ship’s clock (and his own metabolic clock) during the trip.  When he 
got back, he was 21 years + 14 years = 35 years old.  E-b Joe was also 21 year old 
when s.s. Bob left.  He aged 51.4 years as measured by his ground clock during the 
trip.  That means that when s-s Bob got back, e-b Joe was 21 years + 51.4 years = 
72.4 years old.  In short, the two aged at different rates, and we still haven’t gotten to 
the paradox.  

We could look at this problem 
using a space-time diagram.  
From earth-bound Joe’s frame of 
reference, assuming that s-s Bob 
took one rocket out and a return 
rocket back in (he has to make 
the turn-around somehow--we’ll 
assume he did it this way), the 
diagram looks like the one to the 
right:

turnaround point

Bob coming back     
on rocket B

Bob going out on
rocket A

reunion
continuation

of rocket A

continuation
of rocket B

earth-bound 
Joe’s motion 
in time
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This is where things get ugly.  In relativity, it is possible to transform from one 
frame of reference to another using what are called the Lorentz 
transformations.  That means that given an x’-axis coordinate and the t’-axis 
coordinate for an event, you can determine the event’s corresponding x-axis 
coordinate and the t-axis coordinate.  In our case, the unprimed coordinate 
system is that of the earth’s.  YOU WILL NOT BE HELD RESPONSIBLE 
FOR USING THIS RELATIONSHIP ON YOUR NEXT TEST.  DON’T 
MEMORIZE IT!  For the sake of seeing the whole in all its gory details, 
though, I’m reproducing the time part of the relationship below.

If you would all like to join me in a rousing chorus of “YIKES,” feel free.  
Feeling better?  Good!  Now to use this monster, there are a few things you 
need to know:

t = x'sinh  θrocket + t 'cosh  θrocket
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where      is the angle of tilt of the 
moving frame’s axes as viewed on a 
space-time diagram (remember, this 
is related to the velocity of that 
frame)

a.) The relative velocity between two objects is symbolized by a       
.  In this case, the relative velocity between the rocket and the earth is

b.) In the kind of geometry we are working with, cosine functions (the side 
adjacent to the angle you know in a right triangle divided by the triangle’s 
hypotenuse) gives way to what are called hyperbolic cosines.  A similar 
situation occurs with the sine functions.

βr = vc =
.96c

c = .96

c.) If you mess with the geometry, it turns out that (again, nothing you 
need to memorize):

cosh  θr = 1−β2( )1/2

             = 1- 24
25( )2( )1/2

             = 25
7
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d.)  Lastly, it needs to be noted that at the turn-around point, Bob is still at the 
origin of his primed coordinate axis (as far as he is concerned, neither he nor 
his primed axis have moved since the trip began, so his position relative to 
that axis has always been the same, or x’=0).  Additionally, his time t’ at the 
turn-around point, as far as the ships clock is concerned, has been given at t’ = 
7 years.  With all that in mind, the Lorentz transformation states that the time 
at turn-around as measured on the earth’s clocks will be:

t = x'sinh  θrocket +      t '        cosh  θrocket

 =      0             + 7years( ) 1−βr
2( )1/2⎡

⎣
⎤
⎦

 =  7years( ) 1− 24
25
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⎞
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 =  25.7 years.
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If it takes 25.7 earth years for half the trip to take place, it must take 51.4 years 
for the round trip to take place.  In other words, the simple relativistic (time 
dilation) calculation we did at the start reflects the reality of the situation, at 
least as far as the Lorentz equations are concerned.

If any constant-velocity frame of reference is as good as any other, why 
doesn’t Bob in the space ship look out, “see” his brother racing away from him 
with velocity (24/25)c, “observe” time dilation in his brother’s frame and find 
that when he returns home, his twin, earth-bound Joe, is younger than he is?

That’s the paradox.  
Which scenario is “right” and which outcome actually happens?

Isn’t this fun?

Actually, it gets better ‘cause we still haven’t dealt with the paradox!  
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It is with this bit of amusement that relativity students have been faced ever 
since Einstein unleashed the horror back in the early twentieth century.  And it 
turns out that solution is conceptually simple (sort of).  The reality is that s.s. 
Bob takes rocket A out away from the earth.  This rocket has a set of meter 
sticks complete with an attached set of synchronized clocks.  The whole 
shabang moves with Bob while he is in rocket A.  If he does the math (the very 
same math we did back on page 3 but with Bob’s frame being the assumed, 
stationary, unprimed frame), he will “observe” Joe’s time to slow down just as 
expected for situations in which you have relative velocities.  And by the time 
turn-around occurs, he will conclude that the passage of time on earth will have 
been:

tship = γ  tearth

   ⇒    tearth =
7 years

3.67
   ⇒    tearth = 1.9 years
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With 1.9 years passing on earth on the way out, and the same amount of time 
passing on the way back, it would appear that there is a discrepancy of 51.4 
years minus 1.9 years minus 1.9 years, or 47.6 years.  So if our first set of 
evaluations were correct (and remember, the Lorentz transformations did 
substantiate that claim), what happened to the missing 47.6 years?

In fact, the missing years are found if we observe the consequence of space-ship 
Bob’s transfer from rocket A, complete with its lattice of meter sticks and 
synchronized clocks, to rocket B with its completely different lattice of meter 
sticks and synchronized clocks.  The turn-around (this is essentially an 
acceleration phenomenon), in other words, evidently added 47.6 years to the 
mix.

Interestingly, this can be seen quite nicely using a space-time diagram for the 
situation (and now we are back to “the fun!”).
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The first thing to think about is how synchronized clocks actually work.  This has 
at its heart the question,  “In relativity, what does it really mean to ‘observed’ an 
event?”

What’s actually going on with 
s.s. Bob’s motion?  Well, he is 
moving along with a set of 
meter sticks that are rigidly 
attached to his outbound 
rocket.  He isn’t moving 
relative to them; they aren’t 
moving relative to him (this is 
why his coordinate is always, 
effectively, x’=0).  That lattice 
extends out in front of him and 
behind him, reaching all the 
way to and passed earth.  
Attached to each of those meter 
sticks is a synchronized clock.

lattice of meter sticks

synchronized clocks

nothing is to scale (obviously)

Everything, the rocket, 
the meter sticks lattice, 

the synchronized 
clocks, everything is 

moving with the 
rocket’s velocity
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Below is the space-time diagram we generated to track s.s. Bob’s world-line.  

turnaround point

Bob coming back     
on rocket B

Bob going out on
rocket A

reunion

continuation
of rocket A

continuation
of rocket B

Joe plodding
along in time
on earth

What observations can we make about the motion of both fellows?
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1.)  Back when we were first looking 
at the idea of space-time diagrams, we 
noticed that each set of axes has lines 
of simultaneity that are always 
parallel to the x-axis of the grid.  

Two observations:
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All the events that occurred at 
x’=3 (for example) would be 
found along the red line.  All 
events that occurred at t’=4 (for 
example) would be found long 
the blue line.

2.) We actually know what s.s. Bob’s x’ axis looks like.  We have already 
graphed the events associated with the space ship’s motion using what we 
know from the earth’s perspective.  We also know that every one of those 
defined events has a primed x coordinate of x’=0 (he never leaves the 
origin of the primed axis as it’s moving along with him).  In other words, 
overlaying the primed coordinate axes onto our already generated world 
line for the space ships motion yields:



The time axis for the primed system is shown below.  What’s nice is that we know 
there is symmetry between the positioning of the the x’ axis and the t’ axis (the 
angle between the time axis and the vertical is the same as the angle between the 
position axis and the horizontal), so we can additionally draw the x’ axis.  This is 
all shown below.  

World line from data 
taken on earth

14.

The x’=0 line running along 
the time axis, as usual.

t

x

t '

x'



As usual, lines of simultaneity in the primed axis system will be parallel to the x’ 
axis (the lines of simultaneity for the take-off point and for the turn-around point 
are shown below).

All the clocks in Bob’s 
synchronized set read 
t’=0 along this line

All the clocks in Bob’s 
synchronized set read t’=7 years 
along this line

15.Ship starts here!

Ship
Turns
here!
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When Bob’s frame measures time to be 
t’=7 years, the clock in that set that is 

passing earth will register the earth time 
depicted here

All the clocks in Bob’s 
synchronized set read 

t’=7 years along this line

This is where you need to focus.  Look at the line of simultaneity for s-s Bob’s 
clocks at the turn-around point.  There is one clock in that set of synchronized 
clocks that will pass the earth just as t’ reaches the 7 year mark.  As it does, it 
(being a very smart clock) will not only register its time, it will record the time 
showing on the synchronized set of clocks that are attached to the earth 
(remember, these times are measured along the vertical axis of the space-time 
diagram). 
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Joe’s time has only 
moved this far by turn-

around

All the clocks in Joes synchronized 
set read t = 1.9 years along this line

All the clocks in Bob’s 
synchronized set read t’=7 

years along this line

Put a little differently, on the space-time diagram, making a measurement of 
earth-bound Joe’s time is done by moving vertically up what you and I would 
normally call the y-axis.  Space-ship Bob’s t’=7 years lines of simultaneity crosses 
that vertical axis somewhere.  The vertical axis reading at that crossing point 
measures the time e-b Joe’s clocks are reading at turn-around.  
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Joe’s time has only moved 
this far by turn-around

continuation
of rocket A

All the clocks in Joes synchronized set 
read t = 1.9 years along this line

All the clocks in Bob’s 
synchronized set read t’=0 

along this line

All the clocks in Bob’s 
synchronized set read t’=7 

years along this line

And to beat a dead horse completely, one more way: Just as s-s Bob’s lines of 
simultaneity are parallel to the x’-axis, all of Joe’s lines of simultaneity must be 
parallel to his x-axis.  And the only line that matters to us?  The one that 
corresponds to s-s Bob’s clock reading 7 years.  That line is shown below, and its 
time reading is only 1.9 years.
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Joe’s time has only moved 
this far since turn-around

All the clocks in Joes synchronized set 
read t = 70 years along this line

All the clocks in Bob’s new synchronized 
set read t’= 7 years along this line

All the clocks in Bob’s new synchronized 
set read t’= 14 years along this line

A similar analysis for the return trip yields a new set of meter sticks and 
synchronized clocks as shown below.  Again, the elapsed time on earth between 
turn-around and reunion is a net 1.9 years.

All the clocks in Joes synchronized set 
read t = 68.1 years along this line

continuation
of rocket B
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Joe’s time has only moved 
this far since turn-around

Shown below is a composite summary of the the various space-time diagrams 
we’ve looked at so far.

IN JUMPING FROM THE OUTGOING 
FRAME OF REFERENCE TO THE 

RETURN FRAME OF REFERENCE, 47.6 
YEAR ARE NOT ACCOUNTED FOR 

USING BOB’S OUTGOING AND 
INCOMING SETS OF CLOCKS

Joe’s time has only moved 
this far up to turn-around
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Earth-bound Joe DID have to span the time required to get to the reunion point.  
From our composite, it can be seen that by moving from rocket A to rocket B (and 
frames of reference that went with those two rockets), space-ship Bob’s clocks did 
not track 47.6 years of elapsed time on earth.

Joe’s time has only moved 
this far since turn-around

IN JUMPING FROM THE OUTGOING 
FRAME OF REFERENCE TO THE 

RETURN FRAME OF REFERENCE, 
40.08 YEAR ARE PICKED UP

Joe’s time has only moved 
this far up to turn-around

In other words, from e-b Joe’s 
perspective, his brother will 
come back as a 35 year-old 
while he (Joe) will be 72.4 
years old.  And from s-s Bob’s 
perspective, he (Bob) will be 
35 years old while his brother 
will be 72.4 years old.  In both 
frames of reference, if you are 
consistent and don’t leave 
anything out, you come to the
same conclusion: Bob will be younger than Joe by the end of the trip.   
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What’s more, as is often the case, simply looking at time dilation or length 
contraction will not solve a relativistic paradox.  There will often be more going on.


